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Surface critical behavior of random systems: Ordinary transition
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We calculate the surface critical exponents of the ordinary transition occurring in semi-infinite, quenched
dilute Ising-like systems. This is done by applying the field theoretic approach directly ind53 dimensions up
to the two-loop approximation as well as in 42« dimensions. Atd542« we extend, up to the next-to-leading
order, the previous first-order results of theA« expansion by Ohno and Okabe@Phys. Rev. B46, 5917~1992!#.
In both cases numerical estimates for surface exponents are computed using Pade´ approximants extrapolating
the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite
systems with quenched bulk disorder is characterized by the new set of surface critical exponents.
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I. INTRODUCTION

The critical behavior of quenched random systems und
going continuous phase transitions is of great interest. I
well known that the critical behavior of ideal pure bulk su
stances may be changed by introducing disorder. A pro
nent result in the theory of quenched disordered system
the Harris criterion@1#, which states that the presence
disorder is relevant for those pure systems which hav
positive specific heat exponenta. Thus, in the class ofO(N)
symmetric N-vector models ind space dimensions Isin
model is the one of primary interest, havinga(d)>0. The
marginal value,a50, corresponds tod52. In this case the
small amount of disorder produces a marginal perturbat
This results in logarithmic corrections to the power-law s
gularities without modification of the critical exponents wi
respect to the pure system~for reviews, see Refs.@2,3#!.

In three-dimensional disordered Ising systems a new
of modified critical exponents appears. This was confirm
by renormalization group~RG! calculations@4–7#, experi-
ments @8–10#, and Monte-Carlo simulations@11,12#. After
pioneering investigations using the Wilson’s RG and« ex-
pansion@4–7,13,14#, scaling-field method@15#, and the mas-
sive field theory in three dimensions@16–19#, there has been
a great renewed interest to the subject in the last few y
@20–24#. An interesting relation between random Isin
model and ‘‘N-colored’’ tethered membranes has been giv
in Ref. @25#. Various aspects of physics of quenched dis
dered systems are the subject of recent extensive MC in
tigations@26–28#.

The presence of boundaries, which are inevitable in r
systems, leads to the new surface physics. General rev
on surface critical phenomena are given in Refs.@29–31#. It
is now well known that there are several surface universa
classes defining the critical behavior in the vicinity of boun
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aries, at temperatures close to the bulk critical point. E
surface universality class is defined both by the bulk univ
sality class and specific properties of a given boundary.

What happens with the surface critical behavior, when
quenched disorder is introduced? First, the defects may
localized only at the boundary. In Ref.@32#, the relevance-
irrelevance criteria of the Harris type concerning the we
surface disorder have been worked out. In the case of
ordinary transition~which corresponds to the free bounda
conditions!, it has been demonstrated that ford.2 the weak
surface randomness is an irrelevant perturbation. The s
conclusion follows from rigorous arguments@33# and Monte
Carlo simulations@34#. There is strong evidence that a sma
amount of quenched surface disorder is irrelevant at the
cial transition as well@32,33,35#.

Second, the random quenched disorder may be introdu
in the bulk, say, of a semi-infinite system bounded by a pla
surface. This will, in general, shift the critical temperature
the bulk phase transition, and drive the system to anot
‘‘random’’ fixed point. According to the Harris criterion
Ising systems are of main concern here. The change of
universality class of the bulk will affect the critical behavio
of the bounding surface. Thus one will expect the new s
face critical exponents to appear. And, in view of the afo
mentioned properties of boundaries, these new surface e
nents should emerge irrespective of the presence of
disorder just at the boundary itself.

This is a situation typical ford.2. The problem of a RG
calculation of ‘‘disorder-induced’’ surface critical exponen
was first addressed by Ohno and Okabe in 1992@36# by
using the« expansion about the upper critical dimension
In the marginal cased52, the boundary critical behavior o
random systems has been studied very recently in a serie
papers@37–39#.

In the present paper, we present an attempt to go bey
the approaches and approximations employed in@36# in cal-
culating the surface critical exponents of random se
infinite Ising-like models. Our main calculations are pe
formed directly at d53 using the massive field theor
©2001 The American Physical Society02-1
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approach@40–43,35# in the two-loop approximation. More
over, we extend, up to the next-to-leading order ofA« ex-
pansion, the previous first-order results of Ohno and Ok
@36#. In both cases, numerical estimates for surface crit
exponents of the ordinary transition are evaluated using P´
approximants improving the direct perturbation theory e
pansions. The obtained values of the surface critical ex
nents are consistent with the results obtained by Ohno
Okabe@36# and confirm that the semi-infinite systems wi
quenched bulk disorder are characterized by a new set o
surface critical exponents.

II. MODEL

The description of the surface critical behavior at the
dinary transition can be formulated in terms of the effect
Landau-Ginzburg-Wilson Hamiltonian

H@w#5E
0

`

dzE dd21r F1

2
u¹wu21

1

2
t0w21

1

4!
v0w4G .

~2.1!

The d-dimensional spatial integration is extended over
half-spaceR1

d [$x5(r ,z)PRdur PRd21,z>0% bounded by
a plane surface atz50. Herew5w(x) is a continuous scala
field corresponding to the one-component order paramete
an original Ising system. The surface is considered to be f
and hence the fieldw(x) satisfies Dirichlet boundary cond
tions atz50, w(r ,0)50 @44,30#.

One of the possibilities to introduce disorder into t
model is to assume that the parametert0 incorporates local
random temperature fluctuationsdt(x) via t05m0

21dt(x).
Here m0

2 is a ‘‘bare mass’’ representing linear temperatu
deviations from the mean-field critical temperature, and
random variabledt(x) has the propertieŝdt(x)&conf50 and
^dt(x)dt(x8)&conf5Dd(x2x8) with D.0. Angular brack-
ets with the subscript ‘‘conf’’ denote configurational avera
ing over quenched disorder which should be implemented
the level of the free energy@45,46#.

Ohno and Okabe@36# analyzed the above random mod
by direct averaging over disorder using the method origina
introduced by Lubensky@6#. Alternatively, the configura-
tional averaging of the free energy can be performed us
the replica trick

F52T lim
n→0

1

n
~^Zn&conf21!, ~2.2!

whereZ is the partition of a configuration given by the Bol
zman weighte2H@w#, as it was first done in the RG calcula
tions by Grinstein and Luther@7#. We shall use this las
possibility to treat randomness.

Employing the replica trick leads to the effective LGW
Hamiltonian with cubic anisotropy defined in the sem
infinite space
05610
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H@wW #5E
0

`

dzE dd21r F1

2
u¹wW u21

1

2
m0

2uwW u2

1
1

4!
v0(

i 51

n

w i
41

1

4!
u0~ uwW u2!2G , ~2.3!

wherewW (x) is ann-vector field with the componentsw i(x),
i 51, . . . ,n. This last effective Hamiltonian is appropriat
for the description of the ordinary transition of random sy
tems in the replica limitn→0. The O(n) symmetric term
arises due to the random averaging in Eq.~2.2! via cumulant
expansion and thus its coupling constantu0}2D,0.

III. CORRELATION FUNCTIONS AND THEIR
RENORMALIZATIONS

The model defined in Eq.~2.3! is translationally invariant
in directions parallel to the boundary. Thus it is often use
to perform Fourier transformations in (d21)-dimensional
subspace with respect to ‘‘parallel’’ coordinatesr. We shall
denote the associated parallel momenta asp. In the perpen-
dicular direction the coordinatez is retained. Sometimes, in
the perturbative calculations it is advantageous to work in
complete coordinate representation, without any transfor
tions to the momentum space. This is another difference w
respect to the approach of Ohno and Okabe@36# who employ
the full momentum-space representation in alld directions as
it was originally done in the earliest field-theoretical work o
semi-infinite systems@44,47#.

The fundamental two-point correlation function of th
free theory corresponding to Eq.~2.3! is given by the Dirich-
let propagator

^w i~r ,z!w j~0,z8!&05GD~r ;z,z8!d i j . ~3.1!

In the familiar pz representation the Dirichlet propagat
reads

GD~p;z,z8!5
1

2k0
@e2k0uz2z8u2e2k0~z1z8!#, ~3.2!

where the standard notation is used,k05Ap21m0
2.

The Dirichlet propagator vanishes identically when
least one of itsz coordinates is zero. Consequently, all t
correlation functions involving at least one field at the s
face vanish. This property holds for both the free and ren
malized theories@30#. Owing to this property, it is not a
straightforward matter to analyze the surface critical beh
ior at the ordinary transition.

In fact, the critical surface singularities at the ordina
transition can be extracted by studying the correlation fu
tions with insertions of~inner! normal derivatives of the
fields at the boundary,]nw(r ) @48,44,49#. Actually, in order
to obtain the characteristic exponenth i

ord of surface correla-
tions, it is sufficient to consider a correlation function of tw
normal derivatives of boundary fields

G2~p!5 K ]

]z
w~p,z!uz50

]

]z8
w~2p,z8!uz850L , ~3.3!
2-2
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SURFACE CRITICAL BEHAVIOR OF RANDOM . . . PHYSICAL REVIEW E63 056102
where the fieldsw(p,z) are the Fourier transforms of th
fields w(r ,z) in (d21)-dimensional parallel subspac
G2(p) is a parallel Fourier transform of the correspondi
two-point functionG2(r ) in direct space. At the critical poin

G2(p) behaves asp211h i
ord

. It reproduces the leading
critical behavior of a two-point function G2(p)
5^w(p,z)w(2p,z8)& in the vicinity of the boundary plane
The surface critical exponenth i

ord is given by the scaling
dimension of the boundary operator]nw(r ).

In the presence of randomness, the exponenth i
ord differs

from its counterpart in ordered semi-infinite systems. T
other surface exponents of the ordinary transition can be
termined through the scaling laws@30#.

In the present formulation of the problem, the renorm
ization process for the random system is essentially the s
as in the ‘‘pure’’ case@30,35#. One introduces the renorma
ized bulk field and its normal derivative at the surfa
through

wR~x!5Zw
21/2w~x! and @]nw~r !#R5Z]w

1/2]nw~r !,
~3.4!

and renormalized correlation functions involvingN bulk
fields andM normal derivatives

GR
~N,M !~p;m,u,v !5Zw

2N/2Z]w
2M /2G~N,M !~p;m0 ,u0 ,v0!

~3.5!

for (N,M )Þ(0,2). In the special case of only two surfa
operators (N,M )5(0,2), an additional,additive renormal-
ization is required, so that

GR
~0,2!~p!5Z]w

21@G~0,2!~p!2G~0,2!~p50!#. ~3.6!

Everywhere the renormalizations of the mass and coup
constants are implicit. These are the standard ones of
massive infinite-volume theory. The surface renormalizat
factor Z]w(u,v) can be conveniently obtained from the co
sideration of the boundary two-point functionG(0,2), which is
the object with the simplest Feynman graph expansion~see
below!:

Z]w52 lim
p→0

m

p

]

]p
G~0,2!~p!. ~3.7!

A standard RG argument involving an inhomogeneo
Callan-Symanzik equation yields the anomalous dimens
of the operator]nw(r )

h]w5m
]

]m
ln Z]wuFP

5bu~u,v !
] ln Z]w~u,v !

]u
1bv~u,v !

] ln Z]w~u,v !

]v U
FP

.

~3.8!

‘‘FP’’ indicates here that the above value should be cal
lated at the infrared-stable random fixed point of the und
lying bulk theory (u,v)5(u* ,v* ). The surface critical ex-
05610
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ponenth i at the ordinary transition~here and further below
we suppress the superscript ‘‘ord’’ at the surface critical e
ponents! is then given by

h i521h]w . ~3.9!

IV. TWO-LOOP APPROXIMATION

The Feynman diagram expansion of the unrenormali
correlation functionG(0,2) is, to the two-loop order,

~4.1!

Full internal lines represent here the free Dirichlet propa
tors ~3.2! and dashed external lines give the factorse2k0zi

when attached to the internal point with the coordinatezi .
Let us enumerate diagrams in the above sequence 1, 2,
In the present theory described by the effective Hamilton
~2.3!, these graphs have their corresponding weights~aside
from the standard symmetry factors!

2
t1
~0!

2
with t1

~0!5
n12

3
u01v0 , ~4.2a!

t2
~0!

6
with t2

~0!5
n12

3
u0

21v0
212v0u0 , ~4.2b!

t3
~0!

4
and

t4
~0!

4
with t3

~0!5t4
~0!5~ t1

~0!!2. ~4.2c!

The typical bulk short-distance singularities, which a
present in the graphic expansion~4.1!, are subtracted afte
performing the mass renormalization

~4.3!

Here the full lines with signs ‘‘2’’ denote the free bulk
propagators. They are associated with the first term in
Dirichlet propagator~3.2!, which is the usual bulk massiv
propagator in thepz representation. As a result of the ma
renormalization one obtains

~4.4!
2-3
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In this expansion the ‘‘surface’’ divergences still rema
present, due to the one-loop self-energy insertions. These
represented by the closed lines with the index ‘‘1’’ which
means including only the second, mirror term of the fr
propagator~3.2!. Moreover, we have explicitly indexed her
with the label ‘‘D,’’ the original Dirichlet lines @see Eq.
~4.1!#. Bulk propagators are denoted with ‘‘2’’ signs. The
last two graphs in the second line represent just the u
bulk subtractions.

The boundary singularity in the one-loop diagram of t
two-point surface correlation function has to be remov
through the additive renormalization@zero-momentum sub
traction ~3.6!#. This, however, does not influence the calc
lation of the renormalization factorZ]w which involves a
momentum derivation@see Eq.~3.7!#. Surface divergences
present in each of the two last bubble graphs, mutually c
cel. Actually, the whole combination in the third line of E
~4.4! vanishes identically as in Ref.@35#. Hence, applying the
rule ~3.7!, we obtain

~4.5!

Performing the Feynman integrals in~4.5! by analogy with
Ref. @35# we derive the result

Z]w~ ū0 ,v̄0!511
t̄ 1

~0!

4
1 t̄ 2

~0!C, ~4.6!

where the constantC stems from the two-loop contributio
into Eq. ~4.5!,

C.
107

162
2

7

3
ln

4

3
20.094299.20.105063. ~4.7!

Here the renormalization factorZ]w is expressed as
second-order series expansion in powers of bare dimens
less parametersū05u0 /(8pm) and v̄05v0 /(8pm). The
corresponding weighting factorst̄ 1

(0) and t̄ 2
(0) are obtained by

replacements (u0 ,v0)→(ū0 ,v̄0) in the original combinations
t1
(0) and t2

(0) from Eq. ~4.2!.
As it is usual in superrenormalizable theories, the ren

malization factor expressed in terms of unrenormalized c
pling constants is finite. As a next step, the vertex renorm
izations should be carried out. To the present accuracy,
are given by

ū05ūS 11
n18

6
ū1 v̄ D , ~4.8a!

v̄05 v̄S 11
3

2
v̄12ūD . ~4.8b!

Again, the vertex renormalization atd53 is a finite repara-
metrization. All relevant singularities have been removed
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ready after the mass renormalization and after taking i
account the special bubble-graph combinations emergin
presence ofDirichlet propagators. The result is a modifie
series expansion

Z]w~ ū,v̄ !511
n12

12
ū1

v̄
4

1
n12

3 S C1
n18

24 D ū2

1S C1
3

8D v̄212S C1
n18

24 D ūv̄. ~4.9!

Combining the renormalization factorZ]w(ū,v̄) together
with the one-loop pieces of the beta functions

b ū~ ū,v̄ !52ūS 12
n18

6
ū2 v̄ D , ~4.10a!

b v̄~ ū,v̄ !52 v̄S 12
3

2
v̄22ūD , ~4.10b!

through Eq. ~3.8! yields the desired series expansion f
h]w .

In terms of renormalized coupling constantsu andv, nor-
malized in a standard fashion so that

u5
~n18!

6
ū,

3

2
v̄,

we obtain finally

h]w~u,v !52
n12

2~n18!
u2

v
6

224
~n12!

~n18!2 C~n!u2

2
8

9
C~1!v22

16

n18
C~n!uv, ~4.11!

whereC(n) is a function of the replica numbern, defined as

C~n!5C1
n114

96
. ~4.12!

In fact, the last expression~4.11! for h]w provides a result
for the cubic anisotropic model given by the effective
Hamiltonian~2.3! with general numbern of order-parameter
components. In the case of infinite space, this last mo
attracted much attention very recently~see, e.g., Refs.@22#,
@50#, @51#, and references therein!.

In the following we restrict our discussion to the case
random Ising system by taking the replica limitn→0.
Hence, we obtain the next two-loop expansion for the s
face critical exponenth i(u,v)

h i522
u

8
2

v
6

2
3

4
C~0!u22

8

9
C~1!v222C~0!uv.

~4.13!

The numerical value of this exponent should be evaluate
the RG random fixed point of the underlying bulk theo
@16#

u* 520.60509, v* 52.39631. ~4.14!

Through the scaling relations we get access to the other
face critical exponents.
2-4



SURFACE CRITICAL BEHAVIOR OF RANDOM . . . PHYSICAL REVIEW E63 056102
TABLE I. Surface critical exponents of the ordinary transition ford53 up to two-loop order at the
random-fixed pointu* 520.60509,v* 52.39631.

exp

O1

O2 @0/0# @1/0# @0/1# @2/0# @0/2# @11/1# @1/11#

h i 2.1 2.0 1.676 1.721 1.522 1.581 1.364 1.358
D1 2.4 0.25 0.412 0.443 0.481 0.507 0.530 0.531
h' 2.6 1.00 0.838 0.861 0.776 0.800 0.736 0.735
b1 23.1 0.75 0.912 0.943 0.860 0.841 0.875 0.876
g11 0.0 20.50 20.500 20.500 20.380 20.364 – –
g1 3.7 0.50 0.743 0.821 0.808 0.832 0.829 0.832
d1 1.9 1.67 1.847 1.868 1.941 1.968 2.056 2.054
d11 1.7 0.33 0.477 0.501 0.561 0.595 0.695 0.691
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V. SURFACE CRITICAL EXPONENTS

As it is well known, the knowledge of one particular e
ponent at the ordinary transition implies the knowledge
the complete set of surface critical exponents through
scaling relations@30#. For convenience we quote them her

h'5
h1h i

2
,

b15
n

2
~d221h i!,

g115n~12h i!,

g15n~22h'!,

D15
n

2
~d2h i!,

d15
D

b1
5

d122h

d221h i
,

d115
D1

b1
5

d2h i

d221h i
.

The exponenth' characterizes the critical-point correla
tions perpendicular to the surface,b1 describes the decay o
the surface magnetization on approaching the critical te
perature,g11 is the~local! surface susceptibility exponent,g1
is the layer susceptibility exponent,D1 is the surface mag
netic shift exponent, andd11 and d1 give relations between
the surface magnetization and the surface and bulk exte
magnetic fields, respectively, along the critical isotherm. T
values n, h, and D5n(d122h)/2 are the standard bul
exponents.

In order to obtain individual RG expansions for each s
face exponent, we use the above scaling laws~with d53!
combining Eq.~4.13! with the n→0 limits of the two-loop
series expansions for bulk exponentsn andh @17,16,52#
05610
f
e
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-

n5
1

2
1

n12

4~n18!
u1

v
12

2
1

108F ~n12!~38227n!

2~n18!2 u2

1
11

54
v21

~38227n!

3~n18!
uvG , ~5.1!

h5
8

27F n12

~n18!2 u21
v2

27
1

2uv
3~n18!G . ~5.2!

For each of surface critical exponents we obtain a dou
series expansion in powers ofu andv, truncated at the sec
ond order. Power series expansions of this kind are know
be generally divergent due to a nearly factorial growth
expansion coefficients at large orders of perturbation the
@53–56#. Hence, the numerical evaluation of the expone
represented by such series expansions requires ‘‘resum
tion’’ procedure.

The simplest way to obtain meaningful and rather ac
rate numerical estimates is to construct a table of ratio
approximants in two variables from the original series e
pansions. This should work already well when the series
have in lowest orders ‘‘in a convergent fashion.’’ Apparen
divergent ones require more sophisticated summation pr
dures.

The results of our Pade´ analysis are represented in Tab
I. To give an idea about relative magnitudes of first-ord
(O1) and second-order (O2) perturbative corrections appea
ing in our series expansions, we quote their ratioO1 /O2 ~at
fixed point! in the second column. The larger~absolute! val-
ues of this ratio correspond to the better apparent con
gence of truncated series. Except forb1 andg11, the values
of O1 /O2 are positive. This means that the signs of the fir
and second-order corrections do not alternate for most of
exponents. Note, that a very similar situation has been
countered in the analysis of perturbation expansions for
face exponents at the ordinary transition in pure syste
@35#.

In fact, as it has been shown in Ref.@35#, the best numeri-
cal estimates for surface exponents in pure semi-infinite s
2-5
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tems have been given by diagonal@1/1# Padéapproximants.
In the present case the qualitative behavior of underly
series expansions is very similar. In accordance with this
expect to obtain numerical results of comparable rather g
quality from nearly diagonal two-variable rational approx
mants of the types

@11/1#5
11a1u1ā1v1a11uv

11b1u1b̄1v
~5.3!

and

@1/11#5
11a1u1ā1v

11b1u1b̄1v1b11uv
. ~5.4!

The corresponding values of surface critical exponents
given in the last two columns of Table I. As we can se
these numbers do not differ significantly between the
selves.

The values@0/0#, @1/0#, and @2/0# are simply the direct
partial sums up to the zeroth, first, and second orders, res
tively. We consider the@11/1# and @1/11# values as the bes
we could achieve from the available knowledge about
series expansions in the frames of the present approxima
scheme. Their deviations from the other second-order e
mates of the table might serve as a rough measure of
achieved numerical accuracy.

VI. A« EXPANSION

An alternative approach to calculate the desired surf
critical exponents is the treatment of the theory in 42«
space dimensions (A« expansion! and subsequent extrapola
tion to «51. This approach was initiated by Ohno and O
abe@36#. These authors considered the two-loop approxim
tion for correlation functions in random semi-infinite spac
They derived the corresponding series expansions in pow
of renormalized coupling constants and«, for surface expo-
nentsh i and h' . We quote their results for the ordinar
transition in the case of present interest, settingn51 in the
expressions of Ref.@36# and changing normalizations of cou
pling constants (u→v/24, w→2u/3! to fit with our nota-
tions:

h i522
u

3
2

v
2

1
u2

4
1

5

12
v21

3

4
uv1¯ , ~6.1!

h'512
u

6
2

v
4

1
5

36
u21

11

48
v21

5

12
uv1¯ . ~6.2!

In the present problem dots represent less important term
orderO(«3/2). Unfortunately, only the first nontrivial correc
tions }A« have been obtained from these equations in R
@36#.

Actually, it is possible to derive one more term in theA«
expansion of surface critical exponents using the known
pressions for the fixed-point values up toO(«) @13,14#
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u* 523A6«

53
118

110163z~3!

532 «, ~6.3!

v* 54A6«

53
272

19221z~3!

532 «, ~6.4!

wherez(3).1.2020569 is the Riemannz function, and the
usual geometric factorKd5212dp2d/2/G(d/2) is absorbed
into coupling constants. Thus we obtain

h i522A6«

53
1

756z~3!25

23532 «, ~6.5!

h'512
1

2
A6«

53
1

378z~3!229

23532 «. ~6.6!

It can be easily verified that the above exponents satisfy
scaling relationh'5(h1h i)/2 with the correct value

h52
«

106
1O~«3/2! ~6.7!

of the bulk theory.
Taking into account scaling relations for surface critic

exponents andA« expansions for random bulk exponentsn
andh @13,14# we obtain, in addition,

g1152
1

2
1

1

4
A6«

53
2

3

8

@252z~3!237#

532 «, ~6.8!

g15
1

2
1

1

2
A6«

53
1

621121512z~3!

83532 «, ~6.9!

b15
3

4
1

1

8
A6«

53
2

7

16

@108z~3!2137#

532 «, ~6.10!

Similarly as in the cased53 of the previous section, we
performed a Pade´ analysis of ourA« expansions at«51.
The numerical values of surface critical exponents obtai
in this way are represented in Table II.

The @1/0# values for the exponentsh i andh' reproduce
the first-order results by Ohno and Okabe@36#. On the other
hand, the other exponents,b1 , g11, andg1 slightly differ.
The reason is that we calculated our@1/0# estimates directly

TABLE II. Surface critical exponents of the ordinary transitio
from theA« expansion.

exp

O1

O2 @0/0# @1/0# @0/1# @2/0# @0/2# @1/1#

h i 22.1 2.00 1.664 1.712 1.824 1.792 1.77
h' 22.2 1.00 0.832 0.856 0.907 0.892 0.88
b1 37.6 0.75 0.792 0.794 0.793 0.793 0.79
g11 22.4 20.50 20.416 20.408 20.451 20.457 20.441
g1 24.2 0.50 0.668 0.702 0.628 0.611 0.63
2-6
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from each respectiveA« expansion, while in Ref.@36# they
were obtained from the scaling relations using the above
merical values ofh i andh' .

Comparing the results from Tables I and II we see that
values of first-order approximants, denoted by@1/0# and@0/1#
in both cases, are of comparable magnitudes. But, on
other hand, the values from second-order approximants
significantly different in both tables. The reason is that
second-order contributions of theA« expansion provide cor
rections of opposite signs, as compared to the ‘‘thr
dimensional’’ theory of the previous section~corresponding
orders’ ratiosO1 /O2 have opposite signs!.

Our choice will be in favor of our estimates derived d
rectly in three dimensions for the following reasons. It
well known that to order«, the A« expansion fails to yield
the positive correlation function exponenth for the random
bulk Ising system@see Eq.~6.7!#. In fact, if we try, using the
scaling relationh52h'2h i , to reproduce the numerica
value of h from our second-order data of Table II, we al
always obtain negative values. This deficiency is not pres
in our calculations directly atd53. Moreover, there are sev
eral reports in the literature on ‘‘bad’’ behavior of theA«
expansion at larger orders, and for other bulk expone
@20,21,23#.

At the same time, the fixed-dimension massive fie
theory appears to give quite regular and reliable results
random bulk systems in three dimensions@21–24#, even at
rather low orders of perturbation theory@16,57,18,58#. From
our experience, the massive field theory works also wel
description of surface critical behavior in pure thre
dimensional systems@42,35#.

VII. SUMMARY

We have studied the surface critical behavior of thr
dimensional quenched random semi-infinite Ising syste
with free plane boundaries. We have calculated the co
sponding surface critical exponents of the ordinary transit
employing two alternative possibilities:~a! the massive field-
theoretic approach directly ind53 dimensions and~b! the
A« expansion about the upper critical dimensiond54 with
subsequent extrapolation to«51. In this latter calculation
we extend, to the order ofO@(A«)2#, the previous first-order
results by Ohno and Okabe@36#.

We performed a rational approximant~Padé! analysis of
05610
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the resulting perturbation series expansions in both case
tempting to find out the best numerical values of surfa
exponents in three dimensions. However, the typical beh
ior of perturbative expansions in both calculational schem
appeared to be qualitatively different.

In the last section we gave some arguments in favor
results obtained in the framework~a!: directly atd53. Thus,
the summary for our final numerical values of the surfa
critical exponents at the ordinary transition in the presence
randomness is

h i51.36, D150.53, h'50.74, b150.88,

g11520.24, g150.83, d152.1, d1150.69.

The above values stem from the last two columns of Tabl
The estimate ofg11, for which no approximants@11/1# and
@1/11# exist, has been derived from the scaling relationg11
5n(12h i), where we usedn50.68 @16# and the above
value ofh i51.36. We believe, these values are the best
can derive from all above calculations.

The values of our exponents characterizing the surf
critical behavior of semi-infinite quenched random Ising-li
systems are apparently different from their counterparts
pure Ising systems@42,35#: h i51.528, D150.464, h'

50.779, b150.796, g11520.333, g150.769, d151.966,
d1150.582.

We quantitatively confirm a general expectation that
change of the bulk universality class of a system should
fect its boundary critical behavior. So, the semi-infinite sy
tems with quenched bulk disorder are characterized by a
set of the surface critical exponents. We suggest that
obtained results could stimulate further experimental work
well as numerical investigations of the boundary critical b
havior of disordered systems.
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