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Surface critical behavior of random systems: Ordinary transition
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We calculate the surface critical exponents of the ordinary transition occurring in semi-infinite, quenched
dilute Ising-like systems. This is done by applying the field theoretic approach direatly ;rdimensions up
to the two-loop approximation as well as in-4 dimensions. Atl=4—¢ we extend, up to the next-to-leading
order, the previous first-order results of tiie expansion by Ohno and Okafehys. Rev. B46, 5917(1992].
In both cases numerical estimates for surface exponents are computed usirappracémants extrapolating
the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite
systems with quenched bulk disorder is characterized by the new set of surface critical exponents.
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[. INTRODUCTION aries, at temperatures close to the bulk critical point. Each
surface universality class is defined both by the bulk univer-
The critical behavior of quenched random systems undersality class and specific properties of a given boundary.
going continuous phase transitions is of great interest. It is What happens with the surface critical behavior, when the
well known that the critical behavior of ideal pure bulk sub- quenched disorder is introduced? First, the defects may be
stances may be changed by introducing disorder. A promilocalized only at the boundary. In Rd82], the relevance-
nent result in the theory of quenched disordered systems igrelevance criteria of the Harris type concerning the weak
the Harris criterion[1], which states that the presence of surface disorder have been worked out. In the case of the
disorder is relevant for those pure systems which have ardinary transition(which corresponds to the free boundary
positive specific heat exponeat Thus, in the class dD(N) conditions, it has been demonstrated that tbr 2 the weak
symmetric N-vector models ind space dimensions Ising surface randomness is an irrelevant perturbation. The same
model is the one of primary interest, haviagd)=0. The conclusion follows from rigorous argumer3] and Monte
marginal valuea=0, corresponds td=2. In this case the Carlo simulationg34]. There is strong evidence that a small
small amount of disorder produces a marginal perturbationamount of quenched surface disorder is irrelevant at the spe-
This results in logarithmic corrections to the power-law sin-cial transition as wel[32,33,35.
gularities without modification of the critical exponents with ~ Second, the random quenched disorder may be introduced
respect to the pure systeffor reviews, see Ref$2,3)). in the bulk, say, of a semi-infinite system bounded by a plane
In three-dimensional disordered Ising systems a new seturface. This will, in general, shift the critical temperature of
of modified critical exponents appears. This was confirmedhe bulk phase transition, and drive the system to another,
by renormalization grougRG) calculations[4-7], experi- “random” fixed point. According to the Harris criterion,
ments[8-10], and Monte-Carlo simulationgl1,12. After  Ising systems are of main concern here. The change of the
pioneering investigations using the Wilson's RG anéx-  universality class of the bulk will affect the critical behavior
pansion4—7,13,14, scaling-field methodl15], and the mas- of the bounding surface. Thus one will expect the new sur-
sive field theory in three dimensioh$6—19, there has been face critical exponents to appear. And, in view of the afore-
a great renewed interest to the subject in the last few yeammentioned properties of boundaries, these new surface expo-
[20-24. An interesting relation between random Ising nents should emerge irrespective of the presence of the
model and ‘N-colored” tethered membranes has been giverdisorder just at the boundary itself.
in Ref.[25]. Various aspects of physics of quenched disor- This is a situation typical fod>2. The problem of a RG
dered systems are the subject of recent extensive MC invesalculation of “disorder-induced” surface critical exponents
tigations[26-28. was first addressed by Ohno and Okabe in 188@ by
The presence of boundaries, which are inevitable in realising thee expansion about the upper critical dimension 4.
systems, leads to the new surface physics. General reviews the marginal casd= 2, the boundary critical behavior of
on surface critical phenomena are given in RE?9-31]. It random systems has been studied very recently in a series of
is now well known that there are several surface universalitypaperg 37—39.
classes defining the critical behavior in the vicinity of bound- In the present paper, we present an attempt to go beyond
the approaches and approximations employel®6j in cal-
culating the surface critical exponents of random semi-
*Email address: pylyp@icmp.lviv.ua infinite Ising-like models. Our main calculations are per-
"Email address: shpot@icmp.lviv.ua formed directly atd=3 using the massive field theory
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approach40-43,35 in the two-loop approximation. More- "

over, we extend, up to the next-to-leading order\af ex- H[(E]zf dzf dd1r

pansion, the previous first-order results of Ohno and Okabe 0

[36]. In both cases, numerical estimates for surface c,ritical n 1

expongnts of the ordlnary trans'ltlon are evalugted using Pade + EUOE (Pi4+ EUOG 3|%)?

approximants improving the direct perturbation theory ex- ©oi=l :

pansions. The obtained values of the surface critical expo- o . .

nents are consistent with the results obtained by Ohno anWhereQD(X) IS an n-vector f'e.ld with the cqmppnentﬁi(x) !
=1,...n. This last effective Hamiltonian is appropriate

Okabe[36] and confirm that the semi-infinite systems with =1,

guenched bulk disorder are characterized by a new set of tHPr the_ descriptiqn Of_ th_e ordinary transition of rar_1dom Sys-
surface critical exponents. tems in the replica limin—0. The O(n) symmetric term

arises due to the random averaging in Ef2) via cumulant
expansion and thus its coupling constagt — A <0.

1 1
§|V<P|2+ Emg|¢|2

: (2.3

Il. MODEL
s . . I1l. CORRELATION FUNCTIONS AND THEIR
_ The desc_rl_ptlon of the surface crl_tlcal behavior at the or- RENORMALIZATIONS
dinary transition can be formulated in terms of the effective
Landau-Ginzburg-Wilson Hamiltonian The model defined in E42.3) is translationally invariant

in directions parallel to the boundary. Thus it is often useful
~ 1 1 1 to perform Fourier transformations ird{ 1)-dimensional
_ d-1.] = 2, - 2, 4 subspace with respect to “parallel” coordinatesWe shall
Hle] fo dzf d r[Z Vel™* 2 70¢ " 41v0% |- denote the associated parallel momentg.as the perpen-
(2.1 dicular direction the coordinateis retained. Sometimes, in
the perturbative calculations it is advantageous to work in the
. . N L complete coordinate representation, without any transforma-
The d-dlmergsmnal spatial Lntegra(ljtloln Is extended OVer &, 15 the momentum space. This is another difference with
half-spaceR’, ={x=(r,z) e R|r e R""%,z=0} bounded by osnect to the approach of Ohno and OkE&S who employ
a plane surface @-=0. Herep=¢(x) is a continuous scalar e || momentum-space representation indadlirections as

field corresponding to the one-component order parameter 6f \yas originally done in the earliest field-theoretical work on
an original Ising system. The surface is considered to be fregami.infinite systemp44,47.

a}nd hence the fielgp(x) satisfies Dirichlet boundary condi- The fundamental two-point correlation function of the
tions atz=0, ¢(r,0)=0 [44,30. _ _ free theory corresponding to E@.3) is given by the Dirich-
One of the possibilities to introduce disorder into the g propagator
model is to assume that the parametgiincorporates local
random temperature fluctuatiods(x) via ro=m§+ 67(X). (¢i(r,2)¢j(0,2"))o=Gp(r;z,2') 5 . (3.
Heremj is a “bare mass” representing linear temperature . ) -
deviations from the mean-field critical temperature, and thdn the familiar pz representation the Dirichlet propagator
random variableS7(x) has the propertie&37(x))eon=0 and ~ "€ads
(87(X) 87(X") ) con= A S(x—x") with A>0. Angular brack- 1
ets with the subscript “conf” denote configurational averag- Gp(p;z,2' )= =——[e *lz=Z|_g=xo(z+2)] = (3
ing over quenched disorder which should be implemented on 2k
the level of the free energy5,46. o
Ohno and Okabg36] analyzed the above random model Where the standard notation is used:= V_p2+’_“0-
by direct averaging over disorder using the method originally The Dirichlet propagator vanishes identically when at
introduced by Lubensky6]. Alternatively, the configura- least one of itz coordinates is zero. Consequently, all the

tional averaging of the free energy can be performed usin orrelation functions involving at least one field at the sur-
the replica trick ace vanish. This property holds for both the free and renor-

malized theoried30]. Owing to this property, it is not a
straightforward matter to analyze the surface critical behav-
ior at the ordinary transition.

In fact, the critical surface singularities at the ordinary
transition can be extracted by studying the correlation func-
tions with insertions of(innep normal derivatives of the
whereZ is the partition of a configuration given by the Bolt- fields at the boundary,¢(r) [48,44,49. Actually, in order
zman weighte "¢l as it was first done in the RG calcula- to obtain the characteristic exponeliﬂrd of surface correla-
tions by Grinstein and Luthef7]. We shall use this last tions, it is sufficient to consider a correlation function of two

F=—TIlim %((Z”)Conf— 1), (2.2

n—0

possibility to treat randomness. normal derivatives of boundary fields
Employing the replica trick leads to the effective LGW 5 5
Hamiltonian with cubic anisotropy defined in the semi- ,
nfinite space o oroRy GETned | gz(p):<E§D(p,Z)|z0§€D(_p,Z >|z,o>, (3.3

056102-2



SURFACE CRITICAL BEHAVIOR OF RANDOM.. .. PHYSICAL REVIEW B3 056102

where the fieldse(p,z) are the Fourier transforms of the ponents, at the ordinary transitiotthere and further below
fields ¢(r,z) in (d—1)-dimensional parallel subspace. we suppress the superscript “ord” at the surface critical ex-
G,(p) is a parallel Fourier transform of the correspondingponents is then given by

two-point functiong,(r) in direct space. At the critical point

G»(p) behaves asp** Ui reproduces the leading M=2F 75, (3.9
critical behavior of a two-point function G,(p)
=(¢(p,2)(—p,z')) in the vicinity of the boundary plane. IV. TWO-LOOP APPROXIMATION

The surface critical exponervﬂﬁrd is given by the scaling

dimension of the boundary operat@ye(r).

In the presence of randomness, the expongtft differs
from its counterpart in ordered semi-infinite systems. The G2 (p; my, ug, vo) =
other surface exponents of the ordinary transition can be de-
termined through the scaling lay30].

In the present formulation of the problem, the renormal-
ization process for the random system is essentially the same +@ + O Q + ;
as in the “pure” casd30,35. One introduces the renormal-
ized bulk field and its normal derivative at the surface 4.9

through Full internal lines represent here the free Dirichlet propaga-
1 T tors (3.2) and dashed external lines give the facters‘“
PR(X)=Z,"e(x) and [dne(r)r=Z500ne(r), 34 When attached to the internal point with the coordingte
34 Let us enumerate diagrams in the above sequence 1, 2, 3, 4.
and renormalized correlation functions involvig bulk [N the present theory described by the effective Hamiltonian
fields andM normal derivatives (2.3), these graphs have their corresponding weigaside
from the standard symmetry factors

The Feynman diagram expansion of the unrenormalized
correlation functiong(®? is, to the two-loop order,

N,M . _ —7—N/25—-M/2 , .
g(R >(p:m1UyU)_Z<p Z(}(p g(N M)(plmOYUOYUO) (0)

t n+2
3.5 —17 with i =—=—Uo+vo, (4.29

for (N,M)#(0,2). In the special case of only two surface
operators N,M)=(0,2), an additionaladditive renormal- (0)
ization is required, so that L @ T2 5

, e with t5 —Tuo+vo+200u0, (4.2b

GR(P)=Z,G°%(p) -G (p=0)]. (36 o o
t3 o

Everywhere the renormalizations of the mass and coupling —~ and - with =t =(t")% (429

constants are implicit. These are the standard ones of the
massive infinite-volume theory. The surface renormalization Tpe typical bulk short-distance singularities, which are

sideration of the boundary two-point functigh’?, whichis  performing the mass renormalization
the object with the simplest Feynman graph expanssae

below: m§=m2+©+@_m2i N

Ok?
k2=0

Z,,=—lim Tig“"”(p) (3.7 4.3
=M - - 43

Here the full lines with signs =" denote the free bulk
A standard RG argument involving an inhomogeneougpropagators. They are associated with the first term in the
Callan-Symanzik equation yields the anomalous dimensiolirichlet propagator(3.2), which is the usual bulk massive
of the operatow,,¢(r) propagator in thez representation. As a result of the mass
renormalization one obtains

+

g(0’2) (P; m, up, vO) =—kKk- Q """

D

J
Nop= m(?_m In Z(?(p'FP

dInZ;,(u,v) dInZ;,(u,v) N LN m? 8
=Bu(w) =G By (e) 5 D O T O,
(3.8
“FP” indicates here that the above value should be calcu-
lated at the infrared-stable random fixed point of the under- St
lying bulk theory (,v)=(u*,v*). The surface critical ex- (4.9
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In this expansion the “surface” divergences still remain ready after the mass renormalization and after taking into
present, due to the one-loop self-energy insertions. These asecount the special bubble-graph combinations emerging in
represented by the closed lines with the index which presence oDirichlet propagators. The result is a modified
means including only the second, mirror term of the freeseries expansion

propagator3.2). Moreover, we have explicitly indexed here, n+2 T n+2 n+s

with the label ‘D,” the original Dirichlet lines[see Eg. Z, (U,U)=1+—U+—+—( + ——|u?
(4.1)]. Bulk propagators are denoted with—"" signs. The ¢ 12 4 3 24

last two graphs in the second line represent just the usual 3 n+8

bulk subtractions. +(C+ 3 v2+2| C+ - uv. 4.9

The boundary singularity in the one-loop diagram of the
two-point surface correlation function has to be removedcombining the renormalization factaZ,,(U,v) together
through the additive renormalizatidaero-momentum sub-  with the one-loop pieces of the beta functions
traction (3.6)]. This, however, does not influence the calcu- 8
lation of the renormalization factoZ,, which involves a —__ _h+e
momentum derivationisee Eq.(3.7)]. Surface divergences, Bu(u.v) U(l 6 U V) (4.103
present in each of the two last bubble graphs, mutually can- 3
cel. Actually, the whole combination in the third line of Eq. —_—_ 9
(4.4) vanishes identically as in Rgf35]. Hence, applying the Bs(u.v) ;(1 2Y 2ul, (4.100
rule (3.7), we obtain

+ through Eq.(3.8) yields the desired series expansion for
3] .. md Nog -
Zop =1+ P O ----- - ;1_13(1) —~ in terms of renormalized coupling constantandv, nor-
K= pop malized in a standard fashion so that
1 2 0 (n+8)_ 3_
2m? [ ™ oE @ k2 OJ . UZTU' 2Y
4, o
@9 we obtain finally
Performing the Feynman integrals (4.5 by analogy with ) (n+2)
Ref.[35] we derive the result __nt v (nt 2
750 = " 5nrg) U6 Hinrgzd(MY
T(l()) +(0)
Z,,(Ug,vg) =1+ ——+15C, (4.6) 8 , 16
4 9C(l)v n+8€(n)UU, (4.11
yvhere the constant stems from the two-loop contribution whereC(n) is a function of the replica numbe defined as
into Eq. (4.5,
n+14
107 7 4 C(n)=C+ —g5— (4.12
C= 167 3 In 3 0.094299-—-0.105063. (4.7)

In fact, the last expressiai.11) for 7,, provides a result
Here the renormalization factaZ,, is expressed as a for the qubic anis_otropic model given by the effective
second-order series expansion in powers of bare dimensioftamiltonian(2.3) with general numben of order-parameter
less parametersio=uqy/(87m) and vo=v,/(87wm). The components. In the case of infinite space, this last model
corresponding weighting facto?éo) andTgO) are obtained by attracted much attention very recentbee, e.g., Ref422],

replacementsu(y,v,) — (Ug,vy) in the original combinations [50], [51], and references thergin _
t© andt® from Eq. (4.2 In the following we restrict our discussion to the case of
1 2 . . .

o . . . random Ising system by taking the replica limit— 0.
As it is usual in superrenormalizable theories, the renor- ; !

S ) . Hence, we obtain the next two-loop expansion for the sur-
malization factor expressed in terms of unrenormalized Couface critical exponent;(U,v)
pling constants is finite. As a next step, the vertex renormal- P t(uv

izations should be carried out. To the present accuracy, they u v 3 , 8 ,
are given by 77u—2_§_ 5 ZC(O)u —§C(l)v —2C(0)uv.
u0=U< 1+ 6 UTv) (483 The numerical value of this exponent should be evaluated at

the RG random fixed point of the underlying bulk theory
[16]

3
U_O=E( 1+ ~v+2u]. (4.8b
2 u* = —0.60509, v* =2.39631. (4.14

Again, the vertex renormalization dt=3 is a finite repara- Through the scaling relations we get access to the other sur-
metrization. All relevant singularities have been removed alface critical exponents.
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TABLE |. Surface critical exponents of the ordinary transition tb#3 up to two-loop order at the
random-fixed point* = —0.60509,v* =2.39631.

O,
exp 0, [0/0] [1/0] [0/1] [2/0] [0/2] [11/1] [1/11]
7 2.1 2.0 1.676 1.721 1.522 1.581 1.364 1.358
Ay 2.4 0.25 0.412 0.443 0.481 0.507 0.530 0.531
N 2.6 1.00 0.838 0.861 0.776 0.800 0.736 0.735
B1 -3.1 0.75 0.912 0.943 0.860 0.841 0.875 0.876
Y11 0.0 -050 —0.500 —0500 —0.380  —0.364 - -
Y1 3.7 0.50 0.743 0.821 0.808 0.832 0.829 0.832
o1 1.9 1.67 1.847 1.868 1.941 1.968 2.056 2.054
611 1.7 0.33 0.477 0.501 0.561 0.595 0.695 0.691
V. SURFACE CRITICAL EXPONENTS 1 n+2 v 1 [(n+2)(38-27) )
V=t ————U+ 5 —
As it is well known, the knowledge of one particular ex- 2 4(n+8) " 12 108 2(n+8)*
ponent at the ordinary transition implies the knowledge of 11 38— 27
the complete set of surface critical exponents through the + 25,2 ( n) uv (5.)
scaling relationg30]. For convenience we quote them here: 54 3(n+8)
_nty
=5 8[ n+t2  v® 2w -
= 5| a2Vt 55t 5o |- .
=27 (n+8)2" T 277 3(n+8) 6.2

14
ﬁlzz(d— 2+ ),
For each of surface critical exponents we obtain a double
series expansion in powers ofandv, truncated at the sec-

yu=v(1=m), ond order. Power series expansions of this kind are known to
be generally divergent due to a nearly factorial growth of
y1=v(2—7.), expansion coefficients at large orders of perturbation theory

[53-56. Hence, the numerical evaluation of the exponents
v represented by such series expansions requires ‘“resumma-
Ap=5(d=m), tion” procedure.
The simplest way to obtain meaningful and rather accu-
rate numerical estimates is to construct a table of rational

51232 d+2—_77 approximants in two variables from the original series ex-
B1 d=2+p, pansions. This should work already well when the series be-
have in lowest orders “in a convergent fashion.” Apparently
Ay d— g, divergent ones require more sophisticated summation proce-
g T d-2+y dures.

The results of our Padanalysis are represented in Table

The exponent;, characterizes the critical-point correla- I. To give an idea about relative magnitudes_ of first-order
tions perpendicular to the surfag@, describes the decay of (O1) @nd second-ordex;) perturbative corrections appear-
the surface magnetization on approaching the critical temind in our series expansions, we quote their ré@ig/O, (at
perature y,; is the(local) surface susceptibility exponent,  fixed point in the second column. The largebsolute val-
is the layer susceptibility exponent, is the surface mag- Ues of this ratio correspond to the better apparent conver-
netic shift exponent, andy; and 5, give relations between gence of truncated series. Except fdr and y1;, the values
the surface magnetization and the surface and bulk extern@f O,/0, are positive. This means that the signs of the first-
magnetic fields, respectively, along the critical isotherm. Theand second-order corrections do not alternate for most of the
values v, 5, and A=v(d+2—7)/2 are the standard bulk exponents. Note, that a very similar situation has been en-
exponents. countered in the analysis of perturbation expansions for sur-

In order to obtain individual RG expansions for each sur-face exponents at the ordinary transition in pure systems
face exponent, we use the above scaling léawish d=3) [35].
combining Eq.(4.13 with the n—0 limits of the two-loop In fact, as it has been shown in RE35], the best numeri-
series expansions for bulk exponemtand 7 [17,16,52 cal estimates for surface exponents in pure semi-infinite sys-
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tems have been given by diagohal1] Padeapproximants. TABLE Il. Surface critical exponents of the ordinary transition
In the present case the qualitative behavior of underlyingrom the V& expansion.

series expansions is very similar. In accordance with this we
expect to obtain numerical results of comparable rather good (o)}

quality from nearly diagonal two-variable rational approxi- exp 0, [0/0] [v0] [0/ [20] [0/2]  [1/1]
mants of the types

n —21 200 1664 1712 1824 1.792 1.772

1+au+av+agu 7, —22 1.00 0832 0856 0907 0.892 0.884
[11/1]= — 53 B, 376 075 0792 0794 0793 0793 0.793
1+bsu+by yi —24 —050 —0.416 —0.408 —0.451 —0.457 —0.441
y. —42 050 0668 0702 0.628 0.611 0.636
and
1+a1u+alv
[1/11]= — : (5.9 u*=—3\ /6—8+ 18—110+ o%(3) g, (6.3
1+byu+byv+byuv 53 53
The corresponding values of surface critical exponents are . 6e 19—214(3)
given in the last two columns of Table I. As we can see, vi=4 53 532 €, (6.4

these numbers do not differ significantly between them-

selves. _ _ where {(3)=1.2020569 is the Riemannfunction, and the
The values[0/0], [1/0], and [2/0] are simply the direct ysual geometric factoKy=2'"97"%4T'(d/2) is absorbed
partial sums up to the zeroth, first, and second orders, respegrto coupling constants. Thus we obtain

tively. We consider th¢11/1] and[1/11] values as the best

we could achieve from the available knowledge about the 6c 756((3)—5

series expansions in the frames of the present approximation =2 §+ “ox5x¥ & (6.5

scheme. Their deviations from the other second-order esti-

mates of the table might serve as a rough measure of the 1 \/@ 378:(3)— 29
53

achieved numerical accuracy. 1= =
m=1 2X5F

5 €. (6.6)

VI. /e EXPANSION It can be easily verified that the above exponents satisfy the

An alternative approach to calculate the desired surfac&caling relationn, =(7+ #,)/2 with the correct value
critical exponents is the treatment of the theory in&
space dimensionsyk expansiohand subsequent extrapola- n=——
tion to e =1. This approach was initiated by Ohno and Ok- 106
abe[36]. These authors considered the two-loop approxima-
tion for correlation functions in random semi-infinite space.©f the bulk theory. _ _ -
They derived the corresponding series expansions in powers Taking into account scaling relations for surface critical
of renormalized coupling constants aagfor surface expo- €xponents and/s expansions for random bulk exponents
nents », and 5, . We quote their results for the ordinary and#[13,14 we obtain, in addition,
transition in the case of present interest, settisgl in the

° 10 6.7

expressions of Ref36] and changing normalizations of cou- __ }+ E [6e E [252(3)—37] e 6.9
pling constants §—uv/24, w— —u/3) to fit with our nota- YumT572N53 8 53 ’ '
tions:
) 1 N 1 68+ 6211-1512(3) 6.9
u v u 5 3 Y175t 5 Vet awez & :
D 2 Dyt 2 2 V53 8x53°
m=2 3 2+ 4+1ZU +4Uv+ , (6.1
3 1 |[6e 7 [108/(3)—137]
v 5 , 11, 5 6 Bi=7t3\53 16 53 e, (6.10
m=lmg gt g gt gt (62

Similarly as in the casd=3 of the previous section, we

In the present problem dots represent less important terms gferformed a Padanalysis of oure expansions at=1.
orderO(=?. Unfortunately, only the first nontrivial correc- The numerical values of surface critical exponents obtained
tions = \/& have been obtained from these equations in Refin this way are represented in Table 1.
[36]. The [1/0] values for the exponents, and », reproduce

Actually, it is possible to derive one more term in the  the first-order results by Ohno and Okdl36]. On the other
expansion of surface critical exponents using the known exhand, the other exponentg8;, v41, and vy, slightly differ.
pressions for the fixed-point values up@e) [13,14] The reason is that we calculated ¢a@r0] estimates directly
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from each respectivee expansion, while in Ref.36] they  the resulting perturbation series expansions in both cases at-

were obtained from the scaling relations using the above nuempting to find out the best numerical values of surface

merical values ofp,; and 7, . exponents in three dimensions. However, the typical behav-
Comparing the results from Tables | and Il we see that théor of perturbative expansions in both calculational schemes

values of first-order approximants, denoted bi0] and[0/1]  appeared to be qualitatively different.

in both cases, are of comparable magnitudes. But, on the In the last section we gave some arguments in favor of

other hand, the values from second-order approximants ar@sults obtained in the framewof(&): directly atd=3. Thus,

significantly different in both tables. The reason is that thethe summary for our final numerical values of the surface

second-order contributions of thé& expansion provide cor- ~critical exponents at the ordinary transition in the presence of

rections of opposite signs, as compared to the “threefandomness is

dimensional” theory of the previous sectidoorresponding

orders’ ratiosO, /O, have opposite signs 7=1.36, ,=0.53, 7, =0.74, 5,=0.88,
Our choice will be in favor of our estimates derived di-

rectly in three dimensions for the following reasons. It is

well known that to ordek, the /= expansion fails to yield The above values stem from the last two columns of Table I.
the po_sitive correlation function expon_entfor the rz_indom The estimate ofy,;, for which no approximantgL1/1] and
bulk Ising systenjsee Eq(6.7)]. In fact, if we try, using the  [1/11] exist, has been derived from the scaling relatian
scaling relationp=2#%, —»,, to reproduce the numerical =v(1—7,), where we used=0.68 [16] and the above
value of 7 from our second-order data of Table Il, we also ya|ye of 5,= 1.36. We believe, these values are the best one
always obtain negative values. This deficiency is not presentsn derive from all above calculations.
in our calculations directly ad= 3. Moreover, there are sev- The values of our exponents characterizing the surface
eral reports in the literature on “bad” behavior of th& critical behavior of semi-infinite quenched random Ising-like
expansion at larger orders, and for other bulk exponentgystems are apparently different from their counterparts of
[20,21,23. pure Ising systemg42,35: 7,=1.528, A;=0.464, 7,

At the same time, the fixed-dimension massive field=q 779, B1=0.796, y,,= —0.333, y,=0.769, 5,=1.966,
theory appears to give quite regular and reliable results fognz 0.582.
random bulk systems in three dimensid@d-24, even at We quantitatively confirm a general expectation that the
rather low orders of perturbation thed$6,57,18,5& From  change of the bulk universality class of a system should af-
our experience, the massive field theory works also well ifect its boundary critical behavior. So, the semi-infinite sys-
description of surface critical behavior in pure three-tems with quenched bulk disorder are characterized by a new

'}/11:_0.24, '}/12083, 51:2.1, 51]_:069

dimensional systemg2,35]. set of the surface critical exponents. We suggest that the
obtained results could stimulate further experimental work as
VIl. SUMMARY well as numerical investigations of the boundary critical be-

We have studied the surface critical behavior of three-havIor of disordered systems.

dimensional quenched random semi-infinite Ising systems
with free plane boundaries. We have calculated the corre-
sponding surface critical exponents of the ordinary transition \We should like to thank Professor Y. Okabe for a useful
employing two alternative possibilitiega) the massive field-  discussion and Professor H. W. Diehl for reading the manu-
theoretic approach directly id=3 dimensions andb) the  script. M. Sh. would like to thank Professor H. W. Diehl for
Ve expansion about the upper critical dimensibn4 with  his hospitality at the University of Essen. This work was
subsequent extrapolation to=1. In this latter calculation supported by the National Science Council of the Republic
we extend, to the order @[ (\/)?], the previous first-order of China (Taiwan under Grant No. NSC 89-2112-M-001-
results by Ohno and Okalj86]. 084, and by the Deutsche Forschungsgemeinschaft through
We performed a rational approximafRade analysis of the Leibniz program.
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